Wednesday, January 26, 2011

Presidential Green Chemistry Challenge Awards

The Presidential Green Chemistry Challenge Awards[4] began in 1995 as an effort to recognize individuals and businesses for innovations in green chemistry. Typically five awards are given each year, one in each of five categories: Academic, Small Business, Greener Synthetic Pathways, Greener Reaction Conditions, and Designing Greener Chemicals. Nominations are accepted the prior year, and evaluated by an independent panel of chemists convened by the American Chemical Society. Through 2006, a total of 57 technologies have been recognized for the award, and over 1000 nominations have been submitted.

    * In 1996, Dow Chemical won the 1996 Greener Reaction Conditions award for their 100% carbon dioxide blowing agent for polystyrene foam production. Polystyrene foam is a common material used in packing and food transportation. Seven hundred million pounds are produced each year in the United States alone. Traditionally, CFC and other ozone-depleting chemicals were used in the production process of the foam sheets, presenting a serious environmental hazard. Flammable, explosive, and, in some cases toxic hydrocarbons have also been used as CFC replacements, but they present their own problems. Dow Chemical discovered that supercritical carbon dioxide works equally as well as a blowing agent, without the need for hazardous substances, allowing the polystyrene to be more easily recycled. The CO2 used in the process is reused from other industries, so the net carbon released from the process is zero.

Lactide

    * In 2002, Cargill Dow (now NatureWorks) won the Greener Reaction Conditions Award for their improved polylactic acid polymerization process. Lactic acid is produced by fermenting corn and converted to lactide, the cyclic dimer ester of lactic acid using an efficient, tin-catalyzed cyclization. The L,L-lactide enantiomer is isolated by distillation and polymerized in the melt to make a crystallizable polymer, which has use in many applications including textiles and apparel, cutlery, and food packaging. Wal-Mart has announced that it is using/will use PLA for its produce packaging. The NatureWorks PLA process substitutes renewable materials for petroleum feedstocks, doesn't require the use of hazardous organic solvents typical in other PLA processes, and results in a high-quality polymer that is recyclable and compostable.

    * In 2003 Shaw Industries was recognized with the Designing Greener Chemicals Award for developing EcoWorx Carpet Tile. Historically, carpet tile backings have been manufactured using bitumen, polyvinyl chloride (PVC), or polyurethane (PU). While these backing systems have performed satisfactorily, there are several inherently negative attributes due to their feedstocks or their ability to be recycled. Shaw selected a combination of polyolefin resins as the base polymer of choice for EcoWorx due to the low toxicity of its feedstocks, superior adhesion properties, dimensional stability, and its ability to be recycled. The EcoWorx compound also had to be designed to be compatible with nylon carpet fiber. Although EcoWorx may be recovered from any fiber type, nylon-6 provides a significant advantage. Polyolefins are compatible with known nylon-6 depolymerization methods. PVC interferes with those processes. Nylon-6 chemistry is well-known and not addressed in first-generation production. From its inception, EcoWorx met all of the design criteria necessary to satisfy the needs of the marketplace from a performance, health, and environmental standpoint. Research indicated that separation of the fiber and backing through elutriation, grinding, and air separation proved to be the best way to recover the face and backing components, but an infrastructure for returning postconsumer EcoWorx to the elutriation process was necessary. Research also indicated that the postconsumer carpet tile had a positive economic value at the end of its useful life. EcoWorx is recognized by MBDC as a certified Cradle to Cradle design.

Trans and cis fatty acids

    * In 2005, Archer Daniels Midland (ADM) and Novozymes N.A. won the Greener Synthetic Pathways Award for their enzyme interesterification process. In response to the U.S. Food and Drug Administration (FDA) mandated labeling of trans-fats on nutritional information by January 1, 2006, Novozymes and ADM worked together to develop a clean, enzymatic process for the interesterification of oils and fats by interchanging saturated and unsaturated fatty acids. The result is commercially viable products without trans-fats. In addition to the human health benefits of eliminating trans-fats, the process has reduced the use of toxic chemicals and water, prevents vast amounts of byproducts, and reduces the amount of fats and oils wasted.

Glycerine to propylene glycol

    * In 2006, Professor Galen J. Suppes, from the University of Missouri in Columbia, Missouri, was awarded the Academic Award for his system of converting waste glycerin from biodiesel production to propylene glycol. Through the use of a copper-chromite catalyst, Professor Suppes was able to lower the required temperature of conversion while raising the efficiency of the distillation reaction. Propylene glycol produced in this way will be cheap enough to replace the more toxic ethylene glycol that is the primary ingredient in automobile antifreeze.

No comments:

Post a Comment